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A numerical study on the effects of cavitation on orifice flow
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Previous experimental studies have shown better atomization of sprays generated by high-pressure
liquid injectors when cavitation occurs inside the nozzle. It has been proposed that the collapse of
traveling cavitation bubbles increases the disturbances inside the liquid flow. These disturbances
will later trigger the instabilities in the emerged jet and cause a shorter breakup distance. In this
paper, effects of cavitation on increasing the disturbances in the flow through the orifice of an
atomizer are studied. In previous cavitation models, spherical cavitation bubbles are considered.
Here, the cavitation bubbles are allowed to deform as they travel through the orifice. Dynamics of
the cavitation bubble, traveling in the separated shear layer in the orifice, is analyzed through a
one-way coupling between the orifice flow and bubble dynamics. Effects of shear strain, normal
strain, and pressure variation are examined. Three mechanisms are suggested that could be
responsible for the increase in disturbances in the flow due to cavitation. These mechanisms are
monopole, quadrupole, and vorticities generated during growth and collapse of cavitation bubbles.
The effects of these mechanisms are estimated by postprocessing of the solutions to the Navier—
Stokes equations to identify monopole and quadrupole behaviors. © 2010 American Institute of

Physics. [doi:10.1063/1.3386014]

I. INTRODUCTION

High-pressure atomizers and spray generators are of
great interest in industry and have many applications such as
liquid fuel injectors, drying systems, and agricultural sprays.
Experiments have shown that occurrence of cavitation in
high-pressure liquid injectors leads to a better atomization of
the emerged jet.l’2 It has been proposed that the collapse of
traveling cavitation bubbles increases the disturbances inside
the liquid flow. These disturbances later will trigger the natu-
ral instabilities in the emerged jet, and cause a shorter
breakup distance. In an experiment, He and Ruiz’ observed
that when cavitation is present in an orifice flow, the turbu-
lence intensity is much higher than the flow without cavita-
tion but with same Reynolds number. Effects of cavitation on
atomization have been studied by Arcoumanis et al.*® and
more recently by Andriotis et al.® Different models for cavi-
tation have been proposed that provide good results for vapor
fraction and velocity profiles inside the nozzle.”® However,
the effects of cavitation on the jet breakup has not been fully
understood. Kubota’ developed a model for cavitating flows
in which the cavitation cloud is considered as a local homog-
enous cluster of spherical bubbles. Then, through a mean-
field theory, the governing equation for the rate of change of
the radius of the bubbles is calculated from the Rayleigh—
Plesset—Poritsky equation. Giannadakis et al.® also employed
the approach of Kubota to extend the bubble dynamics to a
cluster of bubbles. They simulated the cavitation in a diesel
nozzle hole.

The cavitation models developed by Kubota’ and others®
are based on the assumption of spherical cavitation bubbles
and the effects of deformation of bubbles have not been con-
sidered. In this paper, effects of cavitation bubbles on the
velocity field are investigated to find the mechanisms that are
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responsible for the increase in the disturbances in the flow. In
addition, the deformation of the cavitation bubbles are re-
solved which will be helpful in understanding the other con-
tributions of the cavitation bubble to the velocity field in
addition to the volume change, modeled by spherical
bubbles.

Depending on the cavitation number, the flow could
show no cavitation, cavitation with traveling bubbles, cavi-
tation with a fixed vapor bubble behind the corner, or super-
cavitation. Attempts to predict susceptibility to stress-
induced cavitation in high-pressure orifice flows have been
advanced by Dabiri et al."""" The analysis indicates that
cavitation is most likely in the regions of high shear stress.
Therefore, it is important to study cavitation bubbles in such
environments. Note that Refs. 4—8 did not consider stress-
induced cavitation.

Yu et al.'? studied the collapse of a cavitation bubble
inside a boundary layer over a rigid wall. They observed that
for sufficiently large shear the collapse rate of the bubble will
increase and the reentrant jet will disappear. Experiments
also have shown that the high shear stress can cause cavita-
tion in the liquid even at high pressures. For example, Kottke
et al.” observed cavitation in creeping flow at pressures
much higher than the vapor pressure.

Dabiri ef al."* studied the growth and collapse of cavita-
tion bubbles in shear flow and extensional flow. It has been
observed that combination of pressure variation and a shear
results in large deformation of bubbles and even breakup of
the cavitation bubbles.

All of the previous works on modeling the cavitating
liquid injectors considered the flow to be either a pseudo-
single phase with continuous density variation and without
specification of bubble characteristics or a liquid phase with
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spherical cavitation bubbles traveling in the liquid. In this
work, we study the deformation of cavitation bubbles and
their effects on a flow through the orifice of an atomizer. We
are focused on stress-induced cavitation and therefore con-
sider bubbles that move through the shear layer near the
wall.

This work is a result of a one-way coupling. We are
examining the effect of the bubble growth and collapse on
generating turbulence. We are not considering a flow with
developed turbulence due to cavitation. First, we discuss the
Navier—Stokes solution of the orifice flow. Then, the pressure
variation and shear stress inside the orifice are extracted and
used to create a similar environment for a cavitation bubble.
Bubble dynamics is analyzed using the same approach as
Dabiri et al.'* Finally, the disturbances caused by this cavi-
tation bubble on the free jet emerging from the nozzle are
estimated.

Il. GOVERNING EQUATIONS AND NUMERICAL
METHOD

We consider the deformation of a cavitation bubble in a
viscous liquid flowing through a short orifice. Although the
Reynolds number based on diameter may be large the flow
will be transitional and will be considered as unsteady, lami-
nar. The governing equations for this three-dimensional
problem follow

J
pi<(9—ltl+u-Vu>=—Vp+V~T+0'K5(d)n, (1)

where u, p, and u are the velocity, density, and viscosity of
the fluid, respectively. Subscript i could represent either lig-
uid (/) or gas (g) phase and T is the viscous stress tensor.
The last term represents the surface tension as a force con-
centrated on the interface. Here, o is the surface tension
coefficient, « is twice the local mean curvature of the inter-
face, J is the Dirac delta function, d represents the distance
from the interface, and n corresponds to the unit vector nor-
mal to the interface. The continuity equation for the liquid is

V-u=0, (2)
and for the gas inside the bubble

1D
Vou=--—-L 3)
p Dt

The bubble is assumed to consist of a noncondensable ideal
gas going through an adiabatic process, i.e., p* p?, where y
is the ratio of specific heats. Heat transfer between the
bubble and the liquid has been neglected; y=1.4. The density
variation can be related to pressure variation as follows:

1Dp_ 1 Dp

= , 4
pDt yp Dt @

D/ Dt represent the Lagrangian derivative. Equation (4) is
used in the numerical implementation of the continuity
equation.14
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FIG. 1. Geometry of the axisymmetric orifice and the boundary-fitted grid.
(Flow goes from left to right.)

lll. NUMERICAL IMPLEMENTATION

The numerical solution of the unsteady Navier—Stokes
equations is performed using the finite-volume method on a
staggered grid. The SIMPLE algorithm15 with QUICK
discretization'® of convective and advective terms is used.

In order to track the motion of the interface, the
level-set'"'® method is used. The level-set function 6 is de-
fined as a signed distance function from the interface with
positive values on one side of the interface (gas phase) and
negative values on the other side (liquid phase).

The level-set function is convected by the flow

a0
—+u-Ve=0, (5)
ot

and the fluid properties are calculated as
p=pi+(pg—p)HL0), (6)

=g+ (g — ) HL6), (7

where subscripts /,g correspond to liquid and gas, respec-
tively. H, is a smoothed Heaviside function defined as

0 0<-¢€
H.=\(0+ €)/(2€) +sin(mwble)/(2m) |6 =€ (8)
1 0> €,

where € represents the half thickness of the interface and has
been given the value of 1.5 times the grid spacing.

IV. ORIFICE FLOW SOLUTION

Cavitating flows in orifices have a wide range of time
and length scales due to presence of micron size cavitation
bubbles in the orifice. In order to overcome the difficulties of
numerical simulation of such a system, the orifice flow has
been decoupled from the bubble dynamics. In this approach,
the orifice flow is solved first without bubbles and then the
solution for pressure and shear in the orifice are used to
create a similar environment for an individual cavitation
bubble.

Figure 1 shows the orifice geometry and the computa-
tional domain in which the flow is solved. It is assumed that
the flow remains axisymmetric and laminar. This is accurate
since we are interested in the flow near the upstream corner
of the orifice, where the flow is still laminar. Liquid at high
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FIG. 2. Flow through an orifice at Re=8000: top, pressure coefficient and
bottom, vorticity. The streamline that passes through the middle of the sepa-
rated shear layer is used to find pressure history.

pressure on the left in Fig. 1 flows through the orifice to the
low-pressure ambient on right. No-slip boundary conditions
are applied on the orifice wall and zero Lagrangian deriva-
tive is applied on the downstream boundary. Mass flux is
specified on the upstream boundary. More details can be
found in Dabiri et al.'’ The solution of the orifice flow is
shown in Fig. 2. The calculation is performed for flow with a
Reynolds number of Re=8000 based on the orifice diameter.
A region of low pressure is present behind the inlet of the
nozzle. This is where the cavitation inception will most
likely occur. Looking at the vorticity contours, one can see
that high levels of vorticity are also present at this point due
to the boundary layer that separates from the nozzle wall
downstream of the corner.

V. BUBBLE DYNAMICS IN ORIFICE FLOW

Now, we assume that any bubble in the flow will travel
with the local velocity of the flow field. Therefore, by track-
ing a material point in the orifice one can find the pressure
and shear rate that is felt by the particle. The particle path
that has been chosen is the one that goes through the middle
of the separated shear layer as shown in Fig. 2. Figure 3
shows the pressure history as an element of mass passes
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FIG. 3. History of the pressure coefficient C, and the position of an element
of mass along the orifice axis x;,. C,=P-P,/AP.

through the orifice along this path. The pressure drop occurs
near the nozzle inlet and then the pressure recovers to the
downstream pressure value. The pressure coefficient is de-
fined as

P-P
C, = d

PT AP ©)

with P, being the downstream pressure and AP the pressure
drop across the orifice. This pressure profile then is applied
as a time varying boundary condition for a bubble that grows
and collapses in a shear flow or extensional flow. The com-
putational domain consists of a cubic Cartesian grid with a
simple shear flow, u=k,y, or a two-dimensional extensional
flow, u=k,x,v=—k,y. The magnitude of the shear rate or
normal strain rate also comes from the orifice calculations.
However, a constant strain rate is applied that does not vary
with time and its value is the average value of the strain rate
on the path of the bubble through the orifice. The bubble is
initially spherical and is placed in the center of the compu-
tational domain. The frame of reference is attached to the
center of mass of the bubble; so, the center of mass of the
bubble does not move during the simulation. Moreover, con-
sidering the symmetry (about the z=0 plane) and antisym-
metry (about the y=0 plane) in the problem, one needs to
solve only a quarter of the domain, by applying correct
boundary conditions.

Based on the governing Navier—Stokes equations, and
the force balance at the interface, seven dimensionless pa-
rameters can be defined as follows:

kR? K*R?
e=P = We=b, a=kR, ﬂ,
My o AP
(10)
gRe g AP
D P,

Two other dimensionless parameters are the liquid-to-gas
density ratio and viscosity ratio each having an initial value
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TABLE I. List of parameters for bubbles in orifice flow.

Phys. Fluids 22, 042102 (2010)

Case Re We @ B K Flow type
Case 1 1.0 0.1 0.015 625 0.003 125 2.0142 Shear
Case 2 0.5 0.1 0.015 625 0.003 125 2.0142 Shear
Case 3 1.0 % 0.015 625 0.003 125 2.0142 Shear
Case 4 0.5 % 0.015 625 0.003 125 2.0142 Shear
Case 5 1.242 0.029 84 0.0352 0.004 405 2.5617 Shear
Case 6 0.621 0.007 461 0.017 62 0.004 405 2.5617 Shear

of 0.01. The viscosity of the gas is kept constant during
simulation, but the density changes with time as the volume
of the bubble varies. Reynolds and Weber numbers are de-
fined based on the shear rate, k, initial radius of the bubble,
R, and liquid properties. « defines the ratio of shear stress to
the pressure drop across orifice, AP. B is the ratio of the
bubble radius to the orifice diameter, D, and K is the ratio of
the pressure drop across the orifice to the downstream pres-
sure, P,;. Note that different and much larger Reynolds num-
ber and Weber number can be defined based on the orifice
exit velocity corresponding to the pressure drop. The pres-
sure drop across the orifice is of the same order of magnitude
as the pressure difference across the liquid layer surrounding
the bubble. Consequently, the normal velocity at the bubble
surface will be of the same order as the orifice exit velocity.
Based on the parameters that have been defined, the other
Reynolds number will be Re/« and the Weber number will
be We/a?. More details on the governing equations and nu-
merical method are provided in Ref. 14. Table I provides a
list of parameters used in this study.

Figures 4-9 show snapshots of the cavitation bubble
from the instant it reaches its maximum volume until it col-
lapses and rebounds. Cross section of the bubble, velocity
distribution and pressure contours are shown in each figure.
Lengths are normalized by the initial radius of the bubble.
The first image in Fig. 4 shows the bubble at its maximum
volume. Due to liquid inertia, this maximum volume occurs
slightly after the pressure reaches its minimum and starts to
recover. At the maximum volume, the bubble has an ellipsoi-
dal shape which is a result of the shear flow. As the bubble
collapses, two regions of high-pressure are formed on upper
right and lower left sides of the bubble. These high-pressure
regions later lead to creation of two reentrant jets on both
sides of the bubble. The formation of high-pressure regions
and reentrant jets are similar to what has been observed dur-
ing collapse of cavitation bubbles near rigid walls."” How-
ever, in that case only one reentrant jet is formed that col-
lides with the other side of the bubble. On the other hand, the
two reentrant jets, here, impinge on each other and create a
liquid sheet. The impingement occurs at r=1.315, slightly
after the bubble has reached its minimum volume at ¢
=1.302. Then, the bubble rebounds and the impinging jets
create a liquid sheet inside the bubble. In this case, the
bubble remains integrated and does not break up into smaller
bubbles.

The effects of viscosity have been studied by consider-
ing a lower Reynolds number in case 2. The results are
shown in Fig. 5. The bubble at its maximum volume is very
similar in shape to case 1. Also, during the collapse phase,
the high-pressure regions near the sides of the bubble are
observed. However, the reentrant jets are not as strong as
before and they start to form later in time compared with
case 1. In this case, the reentrant jets do not have enough
momentum to overcome the viscous forces and they don’t
penetrate the bubble much and specifically they do not im-
pinge on each other. Similar behavior is observed during
collapse of cavitation bubbles near rigid walls by Popinet
and Zalesky.19 They found that the larger viscosity of the
liquid prevents the reentrant jet to collide on the other side of
the bubble.

Cases 3 and 4 are similar to cases 1 and 2, respectively,
except that the surface tension is set to zero. The results are
shown in Figs. 6 and 7. Comparing the results, one can find
that the effects of surface tension are more pronounced for
case 4 which has a lower Reynolds number. Even though the
reentrant jets do not impinge in this case, similar to case 2,
they penetrate much further into the bubble and almost reach
each other. This can be explained by the fact that the lack of
surface tension allows more deformation of the liquid-gas
interface without any energy absorption.

Figure 8 shows case 5 which represents a higher surface
tension coefficient and lower Weber number. Similarly, as
the bubble collapses, the high-pressure regions and reentrant
jets form on sides of the bubble. However, in this case, the
jets are wider and have a size comparable to the size of the
bubble itself. When the jets collide with each other, the
bubble breaks up into two parts, while expanding in a direc-
tion normal to the shear flow. This high surface tension re-
sults in a capillary necking action which together with the
reentrant jets lead to bubble fracture.

The independency of the results on the computational
grid size has been checked by repeating the calculation for
case 5 on a finer grid. The finer grid has 50% more nodes in
each of x, y, and z directions. The maximum volume of the
bubble calculated from the finer grid is only 5% different
than the regular grid that has been used.

In case 6, both Reynolds number and Weber number
have been reduced. As shown in Fig. 9, the collapse of the
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t=4.65 (bubble shape)

FIG. 4. Growth, collapse and rebound of cavitation bubble in shear flow for case 1, Re=1.0, We=0.1. Bubble interface, velocity vectors, and pressure
coefficient contours are shown in the plane of symmetry of the bubble.

bubbles results in creation of a small satellite bubble in ad- A case with normal strain in the background flow is also
dition to the two main bubbles. However, the resolution of studied. The background flow far from the bubble is a two
the computational domain is not high enough to resolve all dimensional stagnation point flow. Formation of reentrant
the details of this satellite bubble. jets is observed in this case as well.
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FIG. 5. Growth, collapse, and rebound of cavitation bubble in shear flow for case 2, Re=0.5, We=0.1. Bubble interface, velocity vectors, and pressure

coefficient contours are shown in the plane of symmetry of the bubble.

VI. DISTURBANCES CAUSED BY CAVITATION

In this section, different types of disturbances in the flow
that are created by cavitation bubbles are analyzed. These
disturbances are the effects of monopole, quadrupole and

vorticity generated during the growth and collapse of cavita-
tion bubbles. The fluctuation in the velocity field due to these
disturbances is evaluated at the orifice exit and compared to
the average orifice flow velocity, U.
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t=4.634 (bubble shape)

FIG. 6. Growth, collapse and rebound of cavitation bubble in shear flow for case 3, Re=1.0, We=c. Bubble interface, velocity vectors, and pressure
coefficient contours are shown in the plane of symmetry of the bubble.

The radial component of the velocity field around a © n 4"(1)
bubble can be expanded in terms of spherical harmonics =E E #Yzl(ﬂ, ?), (12)
n=0 m=-n
=2 2 A0y, (60.6), (11)

n=0 m=-n where Y7"’s are the spherical harmonics defined as
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FIG. 7. Growth, collapse, and rebound of cavitation bubble in shear flow for case 4, Re=0.5, We=o. Bubble interface, velocity vectors, and pressure

coefficient contours are shown in the plane of symmetry of the bubble.

2n+1(n-m)! , polynomials and
Y(6,4) =/ n—MPZ'(cos 0)em?. (13)
47 (n+m)! u’ =u-kyx. (14)

A" are the coefficients of the harmonics which are functions

This representation is in spherical coordinates (r, 8, ¢) with
of time and radial distance r. Note that the exponent of r may

the origin at the center of the bubble. P! are the Legendre
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FIG. 8. Growth, collapse and rebound of cavitation bubble in shear flow for case 5, Re=1.242, We=0.029 84. Bubble interface, velocity vectors, and
pressure coefficient contours are shown in the plane of symmetry of the bubble.

differ from the theoretical value of n+2 because the compu- has been subtracted from the velocity field before the spheri-
tational domain cannot be extended to infinite size while the  cal harmonics decomposition is performed. The time varia-
monopole, quadrupole and other multipoles have a finite tion of the multipoles, ¢, are shown in Figs. 10 and 11.

size. Equation (14) indicates that the background velocity The radial velocity component corresponding to the
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t=4.922 t=4.927

FIG. 9. Growth, collapse and rebound of cavitation bubble in shear flow for case 6, Re=0.621, We=0.007 461. Bubble interface, velocity vectors, and
pressure coefficient contours are shown in the plane of symmetry of the bubble.

monopole source can be written as

100F 7
w1 4 0
- - > o —.\\.ee .
" Rk 2\1’/7_T(F/R0)2 oF 2l N 4
r \ ]
-50F \ =

and the rate of volume change can be related to the mono- - \\
ole -100F \ 4
P g d | ]
A50F ————- Gy \ ! .
dV — [ e 2c ]
“rvo_ 20—~ p37,,0 o q \ 1
" =4arou, = 2N7TR kqy. (16) S IU] C— q§ \\ ! -
I | ]
250 1 1 1 1 \\‘I 1 _;
If we assume that this volume change will propagate toward 36 38 4 42 44 46 4B

downstream and upstream of the bubble evenly, the velocity

change caused by it at the orifice exit will be FIG. 10. Monopole and quadrupole moments for case 1.
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After normalizing with the orifice velocity, we find
AU 4 (R, 2(1@,) 0
—=—=\=1] |- ]q- 18
U \"77( D) U 90 (18)

Similarly, the quadrupole effect can be calculated as fol-
lows:

Lo, 115 4
= === , 19
TRk 4N 7 (1R, (19
and then normalized by the average orifice velocity
AU 1 [15(R,\*°(D\**[kR,\ ,
R s -y B G B e P 0)
U 4Va\D L U

The other candidate for increasing the disturbances in
the flow during cavitation is the vorticity generated and ad-
vected in the flow. During the collapse of the bubble high
vorticity regions are formed near the bubble surface. These
vortices will remain in the liquid even after the bubble has
collapsed, and will be convected downstream toward the
exit. As the vortices travel, they become weaker due to vis-
cous dissipation. Yet, they get closer to the orifice exit so
could have more influence on the free-jet velocity. Here, we
evaluate the strength of these velocity fields using some
simple assumptions. During collapse of a single bubble, four
regions of high vorticity are created which are roughly about
an initial diameter of the bubble apart. A schematic of these
vortices is shown in Fig. 12. To find the decay rate of these
vortices, we approximate them by a Taylor—Green array of
vortices.?’ Therefore, the vorticity at the center of each vor-
tex can be written as

w=we ", (21)

where the decay rate, a, is

a=2v|—| .
)

6'is the period of the vortex array in the Taylor-Green vortex
which roughly has a value of 4R, here. Assume that the
vortices are created at the entrance of the orifice and then

(22)
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FIG. 12. Schematic of the vortices created during the collapse of bubble.

travel through it with average velocity of the flow. A sche-
matic of orifice is shown in Fig. 13. The resident time of
vortices inside the orifice is At=L/U, hence

47 L
16R>D

alAt=2v (23)

Multiplying both numerator and denominator by D? and
grouping the dimensionless parameters together, we have

ﬂ(e)ﬁ
Rep

=101.9. (24)

The velocity due to a vortex with uniform vorticity of w in a
region of radius R, at a distance of r from the vortex is

4y = wn?. (25)
r

Assume that, when the vortex exits the orifice, it has a dis-
tance of D/ 10 from the jet surface. The velocity imposed by
vortex on the free surface is

u, sz
U~ UDINO

(26)

The magnitude of w, comes from the simulation and it is of
order of 100—1000k. After substitution in the above equa-
tion, the normalized disturbance is found

o3 ) o) - T 2 o

Three equations (18), (20), and (27) are used to estimate
the disturbances caused by each of the three mechanisms
described here. Table 1II lists the relative disturbance in the
free jet caused by these mechanisms. As can be seen, the

27

FIG. 13. Schematic of the orifice geometry
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TABLE II. Relative strength of different types of disturbances caused by a
single bubble in different cases.

Case Monopole Quadrupole Advected vorticity
Case 1 6.91%x107° 5.50x107° 256X 10728
Case 2 6.72X 107 5.09x107° 2.56 X107
Case 3 7.79 X 107 1.12x1078 2.56 X107
Case 5 277107 7.53%x1078 3.44 %1074
Case 6 2.80% 107 438X 1078 172X 107

strongest disturbance is caused by the monopole source. The
quadrupole is the next with four orders of magnitude smaller
disturbances and advected vorticity is the last with six to
nineteen orders of magnitude smaller than quadrupole ef-
fects. Note that these values represent the effect of a single
cavitation bubble. Moreover, from Eq. (18), it can be seen
that the magnitude of the disturbance is explicitly propor-
tional to Ri or the initial volume of the bubble. Hence, for a
bubble with double the initial radius, the disturbances will be
eight times larger. There is also an implicit dependency on R,
through the qg, which is weak relative to the Rz term. To
investigate the dependency of qg on R, the Rayleigh—Plesset
(RP) equations is solved for different initial radii. The RP
equation21 governs the radius of the bubble, R
Rlé+§1'é2=l P —Pm—z—a—ﬂlé , (28)
2 ol ¢ R R
where P, is the pressure at infinity, P, is the pressure inside
the bubble at the interface and is related to the bubble vol-
ume through a polytropic equation P,=P,(R,/R)??, and P, is
the pressure inside the bubble at the initial equilibrium ra-
dius, R,. The results are shown in Fig. 14. As it can be seen,
while initial radius changes in a range of three orders of
magnitude, qg varies only by a factor of 3.

The disturbances will grow in direct proportion to the
number of bubbles in a neighborhood. Consequently, with
the Rz dependence, the disturbances will be proportional to
the total bubble volume within this factor of 3 noted above.

200 —

T T T T T Tl

.
(4]
o
L I ——
|
n
|
[ IR

(Dimensionless)
)
o
T
1

0
0

q
]

50 - | n

IR | R | Ll

10 10 10’
R, (um)

FIG. 14. Monopole strength as a function of initial radius of the bubble.
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The total volume fraction of bubbles needed to obtain a 10%
velocity fluctuation at the orifice exit is 4.6% for case 1.

A quantitative comparison cannot be made with the Gi-
annadakis ef al.® paper because of the significant differences
in the orifice shape and Reynolds number. Qualitative simi-
larities are found with the behavior of pressure and bubble
size that are shown in their Fig. 4.

Vil. CONCLUSIONS

The effects of cavitation on the orifice flow of an atom-
izer have been studied numerically by means of a one-way
coupling between the orifice flow and cavitation bubbles.
Navier—Stokes equation for two phase flows is solved to
model growth and collapse of cavitation bubbles in the shear
flow. A variable pressure boundary condition is imposed
which is extracted from solution of viscous flow through an
orifice. Reentrant jets are formed on the bubbles as they col-
lapse. Impingement of these jets could result in break up of
the cavitation bubble into two bubbles in some cases. Three
mechanisms are suggested for increase in the disturbances in
the flow and their effects have been estimated. These are
monopoles, quadrupoles, and the vorticity generated during
growth and collapse of bubbles. It is found that in the range
of parameters studied here, the monopoles are the strongest
source of disturbances at the orifice exit.

The cavitation models available in the literature”® are
based on spherical cavitation bubbles. The present work
shows that the volume change of the bubble has the largest
contribution to the disturbances generated by cavitation
bubbles. This finding combined with the fact that the shear in
the flow does not significantly affect the volume change of
deformed cavitation bubbles, as shown by Dabiri et al.,14
validates the use of models developed based on spherical
bubbles. This work shows for a nonspherical bubble the
dominance of the monopole term over the quadrupole and
the vorticity-generation terms with regard to impact on the
liquid flow. It has also been shown that the monopole source
behaves exactly as it would for a spherical bubble of identi-
cal volume to the nonspherical bubble. So, in any two-way
coupling, the treatment of the nonspherical bubble as a
spherical bubble will be an excellent approximation. This
analysis therefore provides a validation of existing two-way
coupled computations that assumed spherical bubbles.
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