Neural Network Flame Closure for a Turbulent **Combustor with Unsteady Pressure** Zeinab Shadram,* Tuan M. Nguyen,† Athanasios Sideris,‡ and William A. Sirignano§ University of California, Irvine, Irvine, California 92697 https://doi.org/10.2514/1.J059721 In this paper, neural network (NN)-based models are generated to replace flamelet tables for subgrid modeling in large-eddy simulations of a single-injector liquid-propellant rocket engine. In the most accurate case, separate NNs for each of the flame variables are designed and tested by comparing the NN output values with the corresponding values in the table. The gas constant, internal flame energy, and flame heat capacity ratio are estimated with 0.0506, 0.0852, and 0.0778% error, respectively. Flame temperature, thermal conductivity, and coefficient of heat capacity $ratio\ are\ estimated\ with\ 0.63, 0.68, and\ 0.86\%\ error, respectively.\ The\ progress\ variable\ reaction\ rate\ is\ also\ estimated\ are\ estimated\ or\ error, respectively.$ with 3.59% error. The errors are calculated based on mean square error over all points in the table. The developed NNs are successfully implemented within the computational fluid dynamics (CFD) simulation, replacing the flamelet table entirely. The NN-based CFD is validated through comparison of its results with the table-based CFD. ## Nomenclature ratio of specific heat capacity coefficient, K⁻¹ Ċ progress variable = erelative distance between two signals = flame internal energy, $m^2 \cdot s^{-2}$ e_f = P^{m} relative distance between two signals mean value pressure, kPa gas constant, $J \cdot kg^{-1} \cdot K^{-1}$ R T_f = flame temperature, K Ź mixture fraction = Z''^2 = mixture fraction variance from the mean ratio of specific heat capacity γ = ratio of one signal rms to the other one's = η κ correlation between two signals thermal conductivity, $W \cdot m^{-1} \cdot K$ λ Φ flamelet output set = Ψ flamelet input set Ω vorticity, s⁻¹ $\dot{\omega}_C$ progress variable reaction rate, $kg \cdot m^{-3} \cdot s^{-1}$ # Superscripts density-weighted Favre average Reynolds average empirical mean of a set # I. Introduction ▶ OMPUTATIONALLY efficient and accurate flamelet models for a turbulent combustor are needed for useful large-eddy simulations (LESs). Promise is offered through the use of deep neural networks (NNs). Here, a well-studied configuration through prior Received 2 May 2020; revision received 20 August 2020; accepted for publication 31 August 2020; published online 30 November 2020. Copyright © 2020 by Zeinab Shadram, Tuan M. Nguyen, Athanasios Sideris, and William A. Sirignano. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. *Graduate Research Assistant, Department of Mechanical and Aerospace Engineering. Student Member AIAA. Assistant Specialist, Department of Mechanical and Aerospace Engineering; currently Postdoctoral Researcher, Sandia National Laboratories. Member AIAA. Professor, Department of Mechanical and Aerospace Engineering. §Professor, Department of Mechanical and Aerospace Engineering. Fellow AIAA. LES and experiment is used, but now with NN providing the subgrid model for the flamelets. It is of special interest to extend the use of NN modeling for unsteady behavior of mean pressure and velocity fields. Both transient and dynamic equilibrium oscillatory conditions are considered. Combustion instability is an acoustical phenomenon caused by the high rate of energy release that increases pressure oscillation amplitude inside a combustion chamber, that is, combustion excites and sustains an unstable high-amplitude pressure oscillation, which can be destructive. Although most rockets and jet engines can oscillate, their unstable behaviors can differ. The configuration here is a singleinjector liquid-propellant rocket engine (LPRE) (see [1,2]). Models for LPRE combustion instabilities have been a research subject for decades [3–5]. Computational fluid dynamics (CFD) models have been proposed for detecting combustion instabilities in LPREs. The continuously variable resonance combustor (CVRC) experiment of Purdue University provides a fundamental test case with available data [6,7]. The CVRC is a combustion chamber with a single-element injector/oxidizer post, in which the oxidizer post length can be varied, resulting in configurations with different stability characteristics. Although it uses gaseous injection, the CVRC is an experiment that is widely accepted as a valid benchmark for computational methods that address combustion instability in LPREs. Current computational capabilities for reacting flows in realistic combustion chambers do not allow for resolution of the smallest scales of importance. Therefore, LESs rather than direct numerical simulations (DNSs) are common [8,9]. This requires models for subgrid phenomena, especially for the combustion process. For gaseous reactants, the flamelet model [10,11] enjoys popularity. The subgrid model has been employed through a lookup table approach [12–14] that avoids the need for a computational time step determined by the chemical kinetics timescales, which typically are shorter than the ones from the numerically resolved physics. Nguyen et al. developed a hybrid LES/Reynolds-averaged Navier-Stokes code, capturing combustion instabilities in CVRC at a much lower computational cost compared to prior works [12]. The results from [12] were compared favorably with experimental data and numerical simulations of the CVRC experiment developed in Purdue University [6,15]. Implementing the flamelet model was a key step in reducing the computational cost. Peters [10] introduced the flamelet concept for turbulent combustion modeling. The flamelet model for turbulent combustion, based on the non-premixed flame physics, has been developed further by Pierce and Moin [11] for the integration of a subgrid model with LES. The flamelet model is a subgrid model, and its raison d'être is that one cannot afford the grid resolution needed to incorporate combustion details in the LES. With the required resolution, the subgrid model would not be needed. The flamelet model is based on the assumption that timescales for heat and mass diffusion, advection, and strain are larger than the chemical times; thereby, quasi-steadiness for chemistry is used. However, the chemistry is localized in narrow regions, and the stronger assumption of chemical equilibrium throughout the flow is not employed, that is, there are narrow flame regions. Although using flamelet models results in computational efficiency, they are the product of simplifying assumptions and they have certain limitations. There are uncertainties associated with presumed subgrid probability density function (PDF) distributions as well as the progress variable definition. Flamelet theory assumes an axisymmetric strain field, while 3-D behavior is commonly found in practice. A single diffusion flamelet occurs with fuel only on one side of the flame and oxygen only on the other side. Experience indicates that combustible mixtures can exist on one or both sides; premixed flames, diffusion flames, and multibranched flames (e.g., triple flames) can occur. New flamelet models addressing these issues are in development [16–19]. Neural networks have been used in many different applications for the purpose of classification, clustering, and regression analysis. Previous studies have also used NNs as a tool to develop closure models in fluid mechanics and even combustion problems. Recursive NNs were used in an early work to predict the unsteady boundary-layer development [20]. Neural network closure models have been incorporated for turbulence modeling in [21–23]. Sen et al. and Sen and Menon [24,25] used NN for the coupling of the linear-eddy-mixing subgrid model with the LES. Ihme et al. [26] had developed optimal artificial NNs to compute flame variables and compare their performances with flamelet tables with different resolutions for a stably burning flame. Among the findings in [26] are that 1) using NNs requires much less memory than a lookup flamelet table; 2) NNs can obtain a smoother flowfield solution; and 3) NNs require higher computational cost than the flamelet table; yet, the computational cost of using NNs is still significantly lower than solving the flame equations. Given the positive findings of [24–26], we envision that future versions of the flamelet model might best be introduced through the use of NNs, allowing nonlinear interpolation that is not easily obtained with the table, which now uses linear interpolation. Neural network can also allow both experimental and theoretical data to be used. Here, we use the data from the lookup table for training the NNs. In attempting to study the capability of the NNs not only to reproduce combustion behavior but also its integration into CFD calculation, flamelet tables provide a good stepping stone, as evidenced by the encouraging results shown in this work. In the future, with new flamelet models, we propose moving directly to the flamelet calculations (possibly augmented by experimental data). The objective of our work was to develop NN-based closure models suitable for studying combustion instability. The key factor in such a model is the coupled relation between pressure and flame variables, specifically the progress variable reaction rate (PVRR) and heat release rate (HRR). Combustion instability leads to a considerably huge change in pressure, which affects the flame behavior. Thus, it requires the flamelet table to cover a large range of pressure; in fact, Nguyen et al. [12] needed to generate a flamelet table that takes pressure as an input. As an example, the maximum amount of HRR at 30 atm
is 650.5% of the maximum HRR in 8 atm; 8 and 30 atm determine the pressure range for the CFD simulation of the CVRC model with a 14 cm oxidizer post after reaching dynamic equilibrium state. A goal is to develop NNs for calculating flame variables based on a pressure-dependent flamelet model. In the earlier stages of the work, the approach was to develop a model that calculates flamerelated variables from the CFD simulation, replacing the function described within the dashed line in the schematic in Fig. 1b [27,28]. In this paper, however, the approach is to study the data inside the flamelet table directly and to develop NNs that focus only on the flamelet model outputs; therefore, the NNs are trained on the flamelet table data that were used before in [12]. Several different NN structures are developed. In the most accurate case, separate NNs for each of the flame variables are designed and tested by comparing their output with the output of the similar variable in the table. In Sec. II, our numerical simulation and combustion modeling method is discussed. In Sec. III, the design and evaluation of the proposed NNs are discussed. In Sec. IV, the NNs are tested on the flamelet table and are also implemented into different CFD simulations. The paper concludes with Sec. V. # II. Background on Combustion Instability Analysis ## A. More on the Numerical Simulation The CVRC experiment is a single-injector coaxial dump combustor [29]. Methane is injected through the outer concentric tube at 300 K. The oxidizer, which is injected through the inner tube, is composed of 58% $\rm H_2O$ and 42% $\rm O_2$ at 1030 K. Both reactants are injected at constant mass flow rates of 0.32 and 0.027 kg \cdot s⁻¹ for the oxidizer Fig. 1 Overview of the computational domain for the CVRC experiment and its CFD code architecture. and fuel, respectively. The 0.8 equivalence ratio makes the flow globally fuel lean. Here, an unstable configuration with a 14 cm oxidizer post length and a 38 cm combustion chamber is the test case; see Fig. 1a. Also, a stable configuration is discussed with a 9 cm oxidizer post length and a similar 38 cm combustion chamber. A constant mass flow rate inlet boundary condition is implemented using the Navier-Stokes characteristic boundary conditions [30] at both reactant inlets. To save computational resources, a short-chokednozzle [31] outlet boundary condition is used instead of an actual convergent-divergent nozzle computational domain; this promotes a high-amplitude pressure oscillation. The mesh consists of 137,494 grid points. Its structure is based on the mesh used in the 3-D calculations of Srinivasan et al. [32]. The smallest radial grid size is 0.05 mm, located around the mixing shear layer or any walls. The smallest axial grid size is 0.2 mm, located both upstream and downstream of the back step. The maximum grid stretching factor along any direction is 1.05, thus ensuring high-quality mesh. Our code is a multiblock, structured finite difference solver with axisymmetric cylindrical coordinates (see Fig. 1b for a high-level view). The overall accuracy is second order in space and fourth order in time. An important feature is the shockcapturing capability of the code longitudinal mode. The entrance-tothroat-area ratio is 5. On the wall, the no-slip boundary condition is applied. The walls are also assumed to be adiabatic and impermeable. Data are acquired from the CFD simulation at a 200 kHz sampling rate from all points. #### B. Combustion Modeling and Challenges The flamelet approach models the turbulent flame as a collection of laminar flamelets, where the chemical timescales are shorter than the turbulent timescales. Accordingly, the chemistry-related calculation occurs before the main flow simulation, through a quasi-steady flamelet table for a diffusion flame under normal compressive strain [10–12]. Decoupling flamelet solution and the resolved LES flow simulation allows the prediction of the complex mechanism at a much less computational cost, yet with much less computational cost, which is the advantage of flamelet modeling [13]. As shown in Fig. 1b, the inputs to the flamelet model are the flame state variables (\tilde{C},\tilde{Z} , and $Z^{\prime\prime/2}$) and \bar{P} . \tilde{Z} indicates the mixture character at each point. $Z^{\prime\prime/2}$ defines the deviation from the mean of \tilde{Z} and is important for turbulent combustion. Essentially, in turbulent non-premixed modeling, laminar flamelet solutions are convoluted by a subgrid beta PDF of Z to model turbulence-chemistry interaction. The beta PDF parameters are functions of \tilde{Z} and $Z^{\tilde{i}/2}$. \tilde{C} determines how much of the combustion process has been conducted at each time and point in space. A Dirac delta PDF is assumed to relate C to \tilde{C} according to the discussions in [11]. The inputs of the flamelet model are collected in $\Psi = [\tilde{Z}, B, \tilde{C}, \bar{P}]$, where $B = Z^{\tilde{i}/2}/(\tilde{Z} - \tilde{Z}^2)$ is a surrogate variable that replaces $Z^{7/2}$. In the input set, \bar{P} varies between 1 and 30 atm, B and \tilde{Z} range between 0 and 1, and \tilde{C} varies from 0 to 0.261. The table includes 30 grid points for \bar{P} , 85 grid points for \tilde{Z} , 26 grid points for $Z^{\tilde{i}/2}$, and 156 grid points for \tilde{C} . The output set for this flamelet model is defined as $\Phi = [\tilde{\omega}_C, \tilde{T}_f, \tilde{e}_f, \tilde{R}, \tilde{\lambda}, \tilde{\gamma}, \tilde{a}_{\gamma}]$. The proposed NN-based models in this work take exactly the same inputs and outputs as the inputs and outputs of the flamelet model stored in Ψ and Φ , respectively. In the CFD structure, flow internal energy along with the aforementioned quantities is used to calculate flow temperature and enthalpy. Pressure is calculated based on the ideal gas law after extracting data from the flamelet table in the CFD. The main difficulty with the flamelet model is that the HRR becomes a 1-D quantity, although embedded in a 3-D flowfield. Furthermore, in the case of combustion instability, the HRR interactions with turbulence and acoustical phenomena result in extremely nonlinear behaviors. Implementing the flamelet model helps to preserve the multiscale and highly nonlinear behavior of HRR in the CFD simulation. In the flamelet-based simulation, HRR is not playing a direct role in the governing equation; instead, the PVRR is the variable that affects the governing equations as the source term in the \tilde{C} transport equation. The flamelet solutions use a complex chemical mechanism (72 reactions with 27 species). Heat release rate relates to the products of the reaction rates of all the species and their corresponding enthalpies; in contrast, the progress variable, defined as the summation of CO_2 and H_2 , only represents the major global chemical reactions. Heat release rate accounts for more detailed (including less significant) reactions than the PVRR, which indicates the progress of the global methane reaction, using only simple global oxidation chemistry. However, it still has similar multidimensional, multiscale, and highly nonlinear behavior, yet less severe and less costly to model than HRR. ## C. Rayleigh Index as an Instability Criterion The most important cause of the high-frequency instability is the coupling between the HRR and the acoustic pressure wave. The Rayleigh index (RI) measures this coupling based on the HRR and pressure fluctuation correlation determining if the HRR drives or damps the pressure wave. The time-averaged local RI is defined over a time period τ , typically few cycles, starting from an initial time t_o $$RI = \frac{1}{\tau} \int_{t_o}^{t_o + \tau} \frac{\tilde{\gamma} + 1}{\tilde{\gamma}} \times \frac{p'}{\hat{P}} \times \frac{HRR'}{H\hat{R}R} dt$$ (1) where p' and HRR' are the local fluctuations in \bar{P} and HRR, respectively [12]. Also, \hat{P} and HRR are the global time averages of \bar{P} and HRR. A positive (negative) value of RI conveys that the pressure oscillation is driven (damped) by HRR. The importance of RI led us to discuss a similar measure for PVRR oscillations by replacing HRR with $\tilde{\omega}_C$ in Eq. (1) to get a modified RI (mRI). ## III. Neural-Network-Based Closure Model The objective here is to design an NN-based closure model to replace the flamelet table in Fig. 1b. Therefore, exactly the same sets of inputs and outputs of the flamelet model (i.e., Ψ and Φ) are selected as the NN-based model input and output sets. An NN is a computational unit that replaces an input/output block in a system implementing its original task. After training, the NN learns to perform a task based on input/output examples without knowing the algorithm that led to those examples. A deep NN contains a series of layers, each of which has several nodes (neurons). Each neuron gets a linear combination of the outputs from neurons in the previous layer as its input, and provides an output [i.e., a specific nonlinear function (activation) of its input used for the next-layer calculations]. The objective of the training process is to find the coefficients of those linear combinations (i.e., the weights) through solving an optimization problem to minimize the square of absolute error between NN outputs and the originally provided examples (i.e., the training data). The square of absolute error is selected as the cost function of the optimization problem to assure better estimation performance for the data with higher magnitude. The training is performed with the backpropagation method using the RMSProp update rule [33]. We used the leaky rectified linear [LReLU(x) = max(x, 0.001x)] activation function in the hidden layers and the linear activation function at the output layer [34]. The NN weights are given the random Xavier initialization [35]. If the training process is overextended,
typically, the NN performance is only good for the training set; this phenomenon is called overfitting. To avoid this, a validation error is computed on an independent set of samples and used to monitor overfitting [33]. Providing the appropriate training and validation data sets is a key step in designing an NN. The optimal NN weights are obtained as those minimizing the error on the validation set. The inputs and outputs are standardized before introduction to the NN, by being centered around their mean and normalized by their standard deviation to improve training performance [33]. ## A. Sample Selection Enough samples must be provided to capture the problem complexity, while limiting the computational cost of the training. The flame-variable modeling is challenging because it is multiscale (e.g., PVRR varies from -284 to 1.28e5 kg·m⁻³·s⁻¹). Combustion instability occurs from the coupling of high HRR and pressure; thus, the NN must accurately predict points with high HRR. However, the population of these points is relatively smaller than other points, requiring a nonuniform sample selection approach. The samples should be selected to provide a rich data set from high HRR points, with enough samples that should be selected from low HRR points to avoid biasing the NN toward uniformly high HRR values. Based on the designed table resolution, there exist around 10 million cells in the table, which are used for selecting training and validation data sets. Initially, a data set is selected uniformly from the available data in the table, and then enriched with more points from higher-energy release zones. At this stage, around 500,000 data points are selected for training, and around 200,000 data points are selected for validation representing 5 and 2% of the available points, respectively. After several iterations, when the learning progress starts to slow down, the partially trained NN is tested on additional data from the table. Then, points with errors higher than a specified bound (e.g., 5%) are added to the training set and points with errors higher than a lower bound (e.g., 2%) are added to the validation set. Here, different NNs are trained for each output of the table, and so, after this step, the training and validation sets might be different among outputs. A maximum limit of 1.5 million points per set was established after the modification steps. #### B. Network Structure A general feedforward NN comprises layers of different numbers of neurons, which communicate through the weighted links. The focus of this work is to explore the effectiveness of NNs as closure models in turbulent combustion; optimizing the NN structure was beyond the scope of the work. We arrived at the proposed structures in trial-and-error fashion by increasing the number of neurons in each layer and the number of layers to a point that good accuracy on the training and validation sets was achieved. Our observation is that increasing the number of NN layers leads to better accuracy than increasing the number of neurons in a single layer. Hence, NNs with more layers and fewer neurons on each layer are selected. In particular, two NN structures are introduced here. In the first NN, based on the physical behavior of flamelet data, the outputs are grouped as G_1 $(\hat{\omega}_C)$, G_2 $(\tilde{e}_f$ and $\tilde{R})$, G_3 $(\tilde{T}_f$ and $\hat{\lambda})$, G_4 $(\tilde{\gamma})$, and G_5 (\tilde{a}_{γ}) . $(G_i$ denotes a group.) Five different NNs (six layers) are designed, one for each of these sets of outputs, each having five hidden layers with 15, 20, 25, 20, and 15 neurons, respectively. The input layer has four and the output layer has one or two neurons, depending on the output group. A single-output NN with the aforementioned structure requires 1771 floating point operations (flop) for data retrieval, whereas a doubleoutput NN requires 1787 flop. This NN model, referred as NN_a , requires 8887 flop for overall flame modeling. Another set of NNs, referred as NN_b , improves the accuracy by increasing the number of layers and using seven single-output NNs (eight layers), each with seven hidden layers with 15, 20, 25, 30, 25, 20, and 15 neurons, respectively. Data retrieval in this NN requires 3326 flop for a single variable and 23,282 flop for all variables. Although the structure proposed in NN_b increases the computational cost of retrieving flame data by 162% over NN_a, it gives an approximately 40% reduction in the reconstruction mean square error (MSE). # IV. Results The closure model for flame variables must be implemented inside the CFD. Both the single-output and multi-output NNs discussed in Sec. III are implemented to replace the flamelet table. The designed NNs are tested in a stand-alone phase and an in situ phase. In the stand-alone phase (off-line), the NN is tested on all the available table data regardless of whether they are used or not for the training and validation, giving error bounds for each NN output compared to the corresponding table output. The second (online) phase tests whether the NN model can satisfactorily model combustion instability in the single-injector LPRE case. Particularly, the highly coupled dynamics governing the LPREs makes combustion modeling very sensitive and complicated. Through the online test, NNs are successfully implemented within the CFD, and they are compared with the table-based simulations. In the following, the off-line and online test results for NN_a and NN_b are provided. #### A. Off-Line Test The NNs are tested on all table data, while at most 15% of the data are used for the training process. Table 1 presents the relative MSE for each variable calculated from Eq. (2), where x_i is an element from the n elements in the flamelet table, and y_i is the NN-estimated value for that element: $$e(\%) = 100 \times \frac{\sqrt{\sum_{i}^{n} (y_{i} - x_{i})^{2}}}{\sqrt{\sum_{i}^{n} x_{i}^{2}}}$$ (2) Table 1 shows better performance for NN_b than NN_a by 36–44%. Having more layers and neurons, besides separate NNs for each variable in NN_b , provides more degrees of freedom for the model, while, on the downside, it increases the computational cost relative to NN_a by around 2.4 times. As NN_b provides better estimation, the data from the flamelet table are compared with their counterpart calculated from NN_b in Fig. 2 for \tilde{e}_f , \tilde{T}_f , $\tilde{\lambda}$, $\tilde{\gamma}$, \tilde{a}_{γ} , and PVRR. In the graphs, the x axis shows the value of an output variable in the table, and the y axis shows the value of the same variable estimated from NNs. Perfect estimation implies that all points lie on the y = xline in each graph. On the graphs, the lines $y = (1 \pm 1\%)x$, $y = (1 \pm 2\%)x$, $y = (1 \pm 5\%)x$, and $y = (1 \pm 10\%)x$ are provided as guidelines for evaluating the NN performance in estimating the value of each point. Variable R was estimated with the lowest error (less than 1%) and not plotted here. Table 1 also shows that the performance of similar NN structures in estimating distinct variables is different. Some variables are estimated much better than others. One of the factors in determining NN performance is the variable range relative to its average value. R and $\tilde{\gamma}$ have relatively short ranges, and they are estimated with the lowest errors. On the other hand, PVRR varies by five orders of magnitudes; thus, it is estimated with the worst error. Figure 2f shows that the worst relative accuracy in PVRR estimation occurs for low values, because higher values are dominating the training. Although each variable is estimated with different errors, our studies showed that required levels of accuracy are different for each variable for successfully implementing the model in CFD. The studies involved a sensitivity analysis of CFD to perturbations in the outputs of the flamelet table. Different simulations are conducted, and in each of them, one of the outputs of the flamelet table is perturbed with random Gaussian noise with bounded amplitudes. Then, we measured how that affects the pressure signal. For instance, our modeling error sensitivity analysis in CFD showed that estimating \tilde{e}_f accurately is more important than others. # B. Online Test Next, NN_a and NN_b are introduced in the CFD simulations for replacing the flamelet table. According to [12], the 14 cm oxidizer post is a CVRC configuration with a very high level of instability. In the 14 cm oxidizer post, for each of the NN sets, two different simulations have been conducted starting from two distinct initial conditions. The two initial conditions are selected at a time before the emerging instability and at a time after the instability has been fully developed. The first is called the "transient case" and the second is called the "dynamic equilibrium case." The pressure signals represent the time waveform of pressure at each of the spatial grid points over Table 1 Comparison of relative MSE (%) results for NN_a and NN_b on all data in the flamelet table-based CFD | Model | \tilde{R} | \tilde{e}_f | $ ilde{T_f}$ | $ ilde{\dot{\omega}}_C$ | $ ilde{\lambda}$ | $ ilde{\gamma}$ | \tilde{a}_{γ} | |----------------------------|-------------|---------------|--------------|-------------------------|------------------|-----------------|----------------------| | $\overline{\mathrm{NN}_a}$ | 0.0889 | 0.14 | 0.99 | 5.96 | 1.04 | 0.14 | 1.58 | | NN_b | 0.0506 | 0.0852 | 0.63 | 3.59 | 0.68 | 0.0778 | 0.86 | Fig. 2 Off-line result comparison for internal energy, flame temperature, thermal conductivity, ratio of heat capacity, ratio of heat capacity coefficient, and PVRR. the combustor geometry. To validate the NN-based flame models, the results from each simulation are evaluated by investigating the similarity between pressure signals from NN-based and table-based CFD simulations. To this end, first, we looked at
the overall relative error between pressure signals calculated from each CFD. Assume \boldsymbol{x} is the pressure signal from table-based CFD and \boldsymbol{y} is the pressure signal from the NN-based CFDs. The relative error of signal \boldsymbol{y} with respect to \boldsymbol{x} is calculated based on Eq. (2), where the index i runs over the time signals. The variable n is the number of time snapshots, and x_i and y_i are the values of the signals at the ith time sample. This gives an overall measure of the distance between the two signals relative to the magnitude of the target signal. As shown later in Table 2, the third column, the pressure signals in the dynamic equilibrium case are estimated on average with 7.18 and 6.23% error by the NN_a -based and NN_b -based simulations, respectively. For the transient case, the average error that resulted from both simulations is 5.02%. This close result from both NN-based models raises the question of whether the relative error is a comprehensive measure for the purpose of modeling combustion instability. Equation (2) normalizes the distance of two signals by the magnitude of the reference. For oscillating signals with high mean values, such a measure ignores the fluctuations errors. In the combustion instability study, it is of high significance for a model Table 2 Error analysis summary for the 14 cm oxidizer post configuration test base | | Model | e, %: Eq. (2) | | κ, %: Eq. (3) | | η, %: Eq. (4) | | <i>e_m</i> , %: Eq. (2) | | |-----------------------------|--------|---------------|------|---------------|-------|---------------|------|-----------------------------------|------| | Oxidizer post cases (14 cm) | | Mean | STD | Mean | STD | Mean | STD | Mean | STD | | Dynamic equilibrium | NN_a | 7.18 | 2.47 | 78.5 | 12.69 | 93.71 | 4.58 | 1.41 | 0.31 | | | NN_b | 6.23 | 2.34 | 82.1 | 13.71 | 93.91 | 2.85 | 0.64 | 0.19 | | Transient | NN_a | 5.02 | 1.32 | 76.66 | 18.74 | 75.84 | 2.35 | 1.27 | 0.26 | | | NN_b | 5.02 | 1.4 | 79.61 | 14.89 | 103.63 | 2.89 | 1.16 | 0.22 | to capture the phase and amplitude of the pressure fluctuation. In that regard, the rms values of the pressure signals and their correlations are compared. The similarity between the phases of two signals (x and y) can be measured through their correlation (Pearson's linear correlation coefficient), calculated as $$\kappa(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x}_i)(y_i - \bar{y}_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x}_i)^2 \sum_{i=1}^{n} (y_i - \bar{y}_i)^2}}$$ (3) where \bar{x} and \bar{y} are their empirical mean values. The similarity between the fluctuation amplitudes of the two signals is measured by comparing their rms. The rms ratio of the fluctuations of y with respect to x is defined as $$\eta(x,y) = \frac{\text{rms}(y)}{\text{rms}(x)} = \frac{\sqrt{(1/n)\sum_{i=1}^{n}(y_i - \bar{y}_i)^2}}{\sqrt{1/n)\sum_{i=1}^{n}(x_i - \bar{x}_i)^2}}$$ (4) In Eqs. (3) and (4), the time averages of the signals are subtracted from the main signal to calculate the fluctuation signals. Hence, the similarity between their mean values is also measured. The relative errors of the mean values e_m of the signals are calculated through Eq. (2) by replacing x and y by \bar{x} and \bar{y} . When signal amplitude is not constant over time (transient signal), the \bar{x}_i and \bar{y}_i are smoothed versions of the actual signals. Otherwise, the actual means \bar{x}_i and \bar{y}_i are equal for all indexes (dynamic equilibrium). Table 2 summarizes the values of the aforementioned criteria for each of the simulations for dynamic equilibrium and transient cases. Each criterion is measured at each grid point on the CVRC geometry. The mean and standard deviation of all the measurements for each criterion are presented in Table 2. The first and second columns identify the case and NN model used in each case. The third main column presents the overall error statistics by their mean and standard deviation in the subcolumns. Similarly, the fourth, fifth, and sixth columns present the correlation, rms ratio, and error in mean values. Note that the desired value for correlation and the rms ratio is 100%. In the dynamic equilibrium case, NN_b has a slightly better performance in all criteria. However, NN_a is selected as the representing flamelet model considering its computational cost, which is around 40% of the NN_b -based simulation computational cost. The results from the NN_a -based simulations and the table-based simulations are discussed in more detail in Sec. IV.B.1. In the transient case, both NN-based models perform similarly with respect to the overall error, mean, and correlation criteria. But, for the pressure fluctuation, the rms ratios captured by the NN_b -based and NN_a -based simulations are 103.63 and 75.84%, respectively. Therefore, NN_b is selected for representing the flamelet model. The results from the NN_b -based and table-based simulations are discussed in more detail in Sec. IV.B.2. NN_b , which shows higher capability in capturing flame dynamics, is also implemented in the 9 cm oxidizer post configuration, which, according to [12], is recognized as a stable configuration. This is discussed later in Sec. IV.B.3. ## 1. Dynamic Equilibrium Case In combustion instability studies, the accuracy in simulating pressure is perhaps the most significant for validating the model. The relative error between pressure signals from the NN_a -based and table-based simulations, calculated by Eq. (2), is shown in Fig. 3a. The highest error happens near the centerline. In the axisymmetric configuration, the centerline (r = 0) can be considered as a singularity and is prone to numerical errors. Accordingly, near the centerline, the signals are noisier and can be modeled with less quality. The correlation of the fluctuation of the pressure signal at each grid point with the pressure signal at the same point from the original tablebased simulation is calculated and shown in the contour plot in Fig. 3b. The points with lower than 80% correlation are located in the pressure node, where the amplitudes of pressure harmonics are almost equal and smaller relative to other locations; therefore, the fluctuation signals there can be considered as noise. Moreover, Fig. 4 compares the ratio of pressure fluctuation rms calculated from the NN_a-based simulation to the rms calculated from the table-based simulation; the rms values of fluctuations of the two simulations are shown in Figs. 4c and 4b, respectively. The parts of the combustor, in which the rms of pressure fluctuations is lower, are consistent with the regions where correlation is lower. These errors that are calculated from Eqs. (2-4) are demonstrated by comparing pressure signals calculated from the table-based and NN-based simulations at few points in the following. Figures 5a and 5b compare the pressure signals at the antinode (10 cm) and near the nozzle at the pressure tab (37 cm) on the top wall. At the antinode, the correlation is 87.73%, and near the nozzle, the Fig. 3 Dynamic equilibrium (14 cm): distribution of relative error (%) and fluctuation correlation between pressure signals calculated from NN_a -based and table-based simulations. Fig. 4 Dynamic equilibrium (14 cm): the distribution of κ calculated from c) NN_a -based to b) the one calculated from table-based simulations. Fig. 5 Dynamic equilibrium (14 cm): comparison of pressure signals at different points on top wall and centerline between the NN_a -based and table-based simulations. correlation is 91.21%. At these points, the overall relative errors are 4.91 and 4.98%, respectively. The rms ratio is 95%, and the mean value is estimated with a 1.4% error at x = 10 cm. At x = 37 cm, the rms ratio is 94.74%, and the mean value is estimated with a 1.14% error. The first and second modes of oscillations are captured with high accuracy in these signals. The antinode and pressure tab are the common points that are investigated for each test because of their geometrical importance and to provide reference points among different cases. Figures 5c and 5d compare pressure signals at points with lower correlations and higher error values. One of the points with a lower correlation is located on the centerline at 21.8 cm (i.e., the pressure node vicinity). Figure 5c compares the pressure signal at this point between the NN-based and table-based simulations. The correlation at this point is 40.07%. The overall error at this point is 9%, the rms ratio is 96.72%, and the mean value error is 0.9%. At 21.8 cm, looking at the pressure signal in the frequency domain, the power of the signal is distributed almost evenly among different modes, and the first mode is weaker relative to other locations. Essentially, the higher frequencies are more significant at this point; however, the rms of the signal is captured to a good extent. The other point is located on the centerline at 1.14 cm, which is right after the dump plane near the mixing layer. Figure 5d compares the pressure signal at this point with 53.64% correlation. The overall error at this point is 17.72%, the rms ratio is 89.03%, and the mean value error is 2.15%. This point is located near the interface of the oxidizer post and combustor, at r=0, a singular point with a very-high-density mesh. The spikes are associated with quantitative excursions of pressure at and beyond the limits used for the construction of the table (30 atm). Spikes do occur in close-neighboring physical locations with the NN as well. The spikes fortunately occur only in regions where little reaction occurs—near the centerline and near the entrance for the propellant flow into the main chamber. Thereby, with no reaction locally, these spikes have no consequence on the RI and the stability of the combustion chamber. Note that
the physical behavior is chaotic, and therefore, each realization can differ in detail. Spikes cannot be expected to occur always at the same location when the small quantitative differences (i.e., numerical errors) in constraints can appear between the NN and the table. Also, to compare the frequency content of pressure signals, the mode shapes of the signals over the centerline are compared. Pressure mode shapes are demonstrated by plotting the modulus of the Fourier spectrum peaks at each grid point along the centerline. First, the time averages of the signals, which are plotted in Fig. 6a, are subtracted from it. Then, the Fourier spectrum is calculated for each of the centered signals. The first and second modes are plotted in Figs. 6b and 6c. The NN_a-based simulation gives a good estimate of the mean Fig. 6 Dynamic equilibrium (14 cm): comparison of pressure mean and the first and second mode shapes between NN_a -based and table-based simulations. (e_m ranges between 0.66 and 2.46%), the first mode, and the second mode; it starts to deviate as for the third mode. However, the effect of the third mode in the overall results is considered negligible. As discussed before, it is important for a model to provide a good estimation of RI to be useful in combustion stability research. The local mRI and RI are compared for the NN-based and table-based simulations in Fig. 7. Comparing Fig. 7b with Fig. 7a and Fig. 7d with Fig. 7c shows that the NN_a-based simulation captures the location of the flame that drives instability, yet underestimates the flame near the corner. Particularly, the NN_a-based simulation underestimates mRI from the table-based simulation near the corner and dump plane. Heat release rate is calculated after the CFD simulation was conducted, only for the purpose of calculating RI. For RI, there exists a good correlation in the flame zone, but discrepancies downstream. The slight underestimation of RI and mRI is consistent with the slight underestimation of the rms value of the limit cycle with the NN-based simulation. In the following, other significant variables are briefly compared between the NN_a -based and table-based simulations by demonstrating their time-averaged behavior. Figure 8 compares the contour plots of time-averaged PVRR (Figs. 8a and 8b), time-averaged vorticity (Figs. 8c and 8d), time-averaged progress variable (Figs. 8e and 8f), and time-averaged mixture fraction (Figs. 8g and 8h). In all these figures, although there are differences in the detailed behavior, the overall shapes are very similar between the two simulations. ## 2. Transient Case As discussed before, the NN_a -based simulation underestimates the rms value of pressure fluctuation in the transient case, whereas the NN_b -based simulation has a similar rms with the table-based one. Accordingly, NN_b is selected as the flame model for the transient simulation. The relative error between the NN_b -based and table-based simulations is shown in Fig. 9a. Similar to the dynamic equilibrium case, in the axisymmetric configuration, the centerline (r=0) can be considered as a singularity and prone to numerical error and noisier signals. Correlation measures how two signals are similar after their mean values have been subtracted. In the transient case, using a global mean value will distort the ability of correlation in measuring the performance of a model. To calculate the local mean value, the signals are smoothened using local quadratic regression [36]. The mean values are subtracted from each signal at each spatial point to get the fluctuation signals. The correlations of the fluctuation of the pressure signal at each grid point from the NN_b -based and original table-based Fig. 7 Dynamic equilibrium (14 cm): comparison of RI and mRI from the NN_a - and table-based simulations. Fig. 8 Dynamic equilibrium (14 cm): time-averaged values of PVRR, progress variable, mixture fraction, and vorticity from the NN_a -based and table-based simulations. Fig. 9 Transient (14 cm): distribution of relative error (%) and fluctuation correlation between pressure signals calculated from the NN_b -based and table-based simulations. simulations are calculated and shown in the contour plot in Fig. 9b. In addition, the pressure fluctuation rms values calculated from the NN_b -based simulation (Fig. 10c) are compared to those calculated from the table-based simulation (Fig. 10b) through their ratio at each grid point. The rms ratio is shown in Fig. 10a. Figures 11a and 11b compare the pressure signals at the antinode (10 cm) and near the nozzle (37 cm) on the top wall for the transient case. At the antinode, the correlation is 87.65%, and near the nozzle, the correlation is 91.46%. At these points, the overall relative errors are 3.65 and 4.02%, respectively. The rms ratio is 104.41%, and the mean value is estimated with 0.95% error at x = 10 cm. At x=37 cm, the rms ratio is 100.42%, and the mean value is estimated with a 1.43% error. Figure 11c compares the pressure signal located on the centerline near the pressure node (17.1 cm) between the NN-based simulation and the original one, where the correlation is 12.48%. The overall error at this point is 7.33%, the rms ratio is 112.02%, and the mean value error is 1.08%. Another point with low correlation is located above the centerline at 2.58 cm, which is right after the dump plane near the centerline. Figure 11d compares the pressure signal at this point with a correlation of 71.36%. The overall error at this point is 7.42%, the rms ratio is 105.79%, and the mean value error is 1.15%. These points are selected to demonstrate the need Fig. 10 Transient (14 cm): the distribution of κ calculated from the c) NN_b-based to b) the one from the table-based simulations. Fig. 11 Transient (14 cm): the NN_b-based and table-based simulations comparison of pressure signal at different points. for different criteria to measure error. In Fig. 11, the overall errors are similar; yet, the correlations are drastically different. The frequency contents of pressure signals are compared through the mode shapes over the centerline. In the analysis here, only the steady-state parts of the simulations are considered. The time average of each of the signals is plotted in Fig. 12a. The values of the Fourier spectrum for the first and second modes are plotted in Figs. 12b and 12c. The NN-based simulation presents a good estimate of the mean (e_m ranges between 1.15 and 2.01%) and the first and second modes. The discrepancies between the two NN-based and table-based simulations start to grow from the third mode. The local RI and mRI are compared for the NN-based simulation in Fig. 13. Comparing Fig. 13b with Fig. 13a, and Fig. 13d with Fig. 13c shows a great similarity in flame location and magnitude between the two simulations. At three time points, from the transient simulations, the snapshots of pressure and vorticity (Fig. 14), progress variable, and PVRR (Fig. 15) are compared between the NN_b-based and table-based simulations. The time snapshots are selected at $t_1 = 0.5$ ms, $t_2 =$ 3.5 ms, and $t_3 = 6.5$ ms, where the last time point is associated with the time that signals have reached to the limit cycle, whereas the other two time points are associated with the growing parts of the pressure signal. In the progress variable graphs, the flame front shape is predicted with a great accordance. The flame front is the curve (thin flame) (Fig. 15) that separates the low- and high-temperature zones. These quantities are governed by both turbulence and acoustic behavior. The turbulent combustion causes the system to become chaotic, whereas the acoustic phenomenon causes the system to resemble waveforms and modal behavior. Accordingly, for variables that are dominantly affected by turbulence, the performance of the NN-based model can be assessed by the statistical characteristics and consequences of those variables, whereas for variables where the acoustic phenomenon is the significant deriver, the NN-based model can be compared in a pointwise manner. One major statistical consequence for a variable, such as PVRR, is the modified RI that was shown in Figs. 13b and 13a for the NN-based and table-based simulations, respectively. The mRI calculated from the NN-based simulation shows highly consistent behavior to the mRI calculated from the table-based simulation, despite the differences that can be spotted in the detailed behavior of PVRR in the time snapshots (e.g., Fig. 151 vs Fig. 15k). ## 3. Nine-Centimeter Case Neural network training was designed mostly for the purpose of reproducing the CFD simulation results of the CVRC experiment under unstable pressure oscillation conditions. This happens when the oxidizer post length is 14 cm. If the length is 9 cm, the pressure oscillations grow to a limit cycle, which is much smaller than in the 14 cm case. So, 9 cm is considered to be stable. Next, to validate its generality, the NN_b model, which was successfully implemented in the 14 cm transient case, is also implemented in the 9 cm case. The relative error between the NN-based and table-based simulations is shown in Fig. 16a. The highest error occurs in the oxidizer post, as the NN is not forced to have certain values there. On the other hand, the table values are enforced at the nonreacting zones. In our future work, we will include such constraints in the NN development. The correlation of the fluctuations of the pressure signals from their mean value from the NN_b -based and table-based simulations is shown in Fig. 16b. The oscillations are not that well correlated. The reason is that the oscillation amplitude (roughly about 50 kPa) is very small relative to the mean value (roughly about 1600 kPa). Essentially, the maximum oscillation amplitude is around 3% of the mean value, and it can be considered as noise. The distribution ratio of pressure fluctuation
rms in the NN_b -based simulation (Fig. 17c) to that in the table-based simulation (Fig. 17b) is shown in Fig. 17a. Most of the points have a similar rms value. Here again, the NN_b -based simulation overestimated the rms values. Both the rms values and their spatial gradients in the 9 cm case are also lower than the ones in the 14 cm unstable case. The pressure rms values are higher at the inlet, and they become smaller throughout the combustor. Figure 18 compares the pressure signal at the antinode (10 cm) and near the nozzle (37 cm) on the top wall, calculated from the NN_b -based simulation with that from the table-based simulation. At the antinode, the correlation is -3.68%, and near the nozzle, the correlation is 0.32%. At these points, the overall relative errors are 2.71 and 3.25%, respectively. The rms ratio is 108.32%, and the mean Fig. 12 Transient (14 cm): comparison of pressure mean and the first and second mode shapes between the NN_b -based and table-based simulations (last 4 ms). Fig. 13 Transient (14 cm): comparison of RI and mRI between the NN_b -based and table-based simulations. Fig. 14 Transient (14 cm): pressure and vorticity snapshots from the NN_b -based and table-based simulations. value is estimated with 0.8% error at x = 10 cm. At x = 37 cm, the rms ratio is 125.11%, and the mean value is estimated with 0.8% error. The low correlations between the fluctuations of signals are because of the noisy nature of the pressure waveform in this configuration. Here, we are not interested in capturing noise and we did not pursue refining the NN for a better performance. However, although it is harder to generate a fully correlated signal, the modal frequencies and signal trends are similar between the NN-based and table-based simulations. The pressure mode shape shows similar behavior in Fig. 19 for the mean value and the first and second mode shapes, where the modes are not predicted as well as the mean. The first and second modes in the 9 cm case have relatively small magnitudes; also, the magnitudes of the modes are approximately equally distributed. In the combustion zone, the first mode is approximately 0.31% of the mean in the NN-based simulation and 0.22% in the table-based simulation. Similarly, the second mode is approximately 0.25% of the mean in the NN-based simulation and 0.19% in the table-based simulation in the combustion zone. Because the 9 cm oxidizer post configuration leads to a stable configuration, the observed pressure fluctuation resembles relatively small amplitude. Essentially, the dynamic of the system is governed significantly by the turbulent combustion rather than acoustic behavior. The turbulence leads to a chaotic behavior in fluctuations for different quantities. Therefore, it is expected from a model to regenerate similar statistical behavior, such as RI, rather than regenerating exactly the same solution as the reference model. The local mRI and RI are compared for the two simulations in Fig. 20. Comparing Fig. 20a with Fig. 20b, and Fig. 20c with Fig. 20d shows that the NN_b -based simulation is very similar to the table-based one in capturing the behavior near the corner and the RI shape. Because the 9 cm case is a stable one, the magnitudes of RI and mRI are lower than those in the 14 cm case. Low RI shows that there is no instability occurring. ## C. Computational Cost The computational costs for the NN-based and table-based simulations are compared in Table 3. One millisecond (200 snapshots) of data is generated from the dynamic equilibrium test cases for each of the simulations. The required CPU time to generate each of the snapshots is calculated for each of the three simulations; the minimum, average, standard deviation, and the maximum of the required CPU time for generating each simulation time step are reported in Table 3. The table-based simulation is considered as the reference, and the relative values of these quantities to the reference are also reported for the NN_a and NN_b. The average CPU times per time step for the NN_a-based and NN_b-based simulations are around 39.2 and 100.7 times the average CPU time per time step of the table-based simulation. The table-based simulation is essentially the same code that was developed and discussed in [12]. Nguyen et al. [12] reported a 0.28 core hour/ms for the computational cost of an axisymmetric simulation with 6.26e4 grid points based on a flamelet model for combustion of 27 species, whereas a similar work, discussed in [15], reported 53 core hour/ms for the computational cost of an axisymmetric simulation with 5.5e4 grid points based on a general equation and mesh solver for combustion of four species. The current work uses 1.375e5 grid points. Also, one should note that the computational Fig. 15 Transient (14 cm): progress variable and PVRR snapshots from the NN_b-based and table-based simulations. Fig. 16 Case with 9 cm oxidizer post: distribution of relative error (%) and fluctuation correlation between pressure signals calculated from the NN_b -based and table-based simulations. Fig. 17 Case with 9 cm oxidizer post: the distribution κ calculated from the c) NN_b-based to b) the one calculated from table-based simulations. Fig. 18 Case with 9 cm oxidizer post: comparison of pressure signals on the wall, at pressure antinode and near the nozzle, between the NN_b -based and table-based simulations. Fig. 19 Case with 9 cm oxidizer post: comparison of pressure mean and first and second mode shapes between the NN_b -based and table-based simulations. Fig. 20 Case with 9 cm oxidizer post: comparison of RI and mRI from the NN_b -based and table-based simulations. costs for the NN-based simulations reported here are based on a nonoptimized code; there is a potential to reduce the NN-based simulation computational cost considerably by applying methods to parallelize and optimize the code. Yet, optimizing the computational cost was not in the scope of this work. Although NN-based closure models increase the computational cost over a flamelet table model, they reduce the required memory significantly. The flamelet model requires around 1.2 GB of the hard disk memory, whereas NN_a and NN_b require around 144.2 and 376 kB, respectively, to be stored on our computer machine. We estimated that loading NN-based models into CFD causes the required RAM to increase less than 1 MB, whereas loading the table-based model into CFD increases the required RAM around 276 MB. The difference between the volume of data when it is stored on the Table 3 CPU time per time step between two consecutive time sample statistics comparison among table-based, NN_a -based, and NN_b -based simulations for 14 cm dynamic equilibrium case | | Minimum | | Mean | | Standard deviation | | Maximum | | |---------------------------|----------|----------|----------|----------|--------------------|----------|----------|----------| | CPU time per time step, s | Absolute | Relative | Absolute | Relative | Absolute | Relative | Absolute | Relative | | Table | 15.000 | 1.000 | 18.407 | 1.000 | 5.574 | 1.000 | 53.000 | 1.000 | | NN_a | 558.000 | 37.200 | 721.201 | 39.181 | 255.471 | 45.832 | 1995.000 | 37.642 | | NN_b | 1444.000 | 96.267 | 1841.935 | 100.067 | 778.595 | 139.681 | 7072.000 | 133.434 | hard disk vs when it is loaded in the RAM is because of the data on the hard disk are stored as text file, whereas they are loaded as numbers in computer RAM. The very low required memory by the NN-based models paves the way for utilization of graphic processing units (GPUs) and consequently high levels of parallelization, which can significantly reduce the computational cost. Particularly, in 2010, Nickolls and Dally [37] provided examples of 16–137 times speed up in fluid-mechanics-related problems when they are implemented on GPU. # V. Conclusions In this study, two deep learning NN sets with different levels of complexity were developed to represent a flamelet model in turbulent combustion with unsteady pressure. The design of the networks was explained, including input/output and training set selection. The goal was to explore the capability of NNs as a tool for combustion modeling. The two developed models $(NN_a \text{ and } NN_b)$ are first validated by testing on the flamelet table data, as an off-line test, and then validated by being implemented in CFD simulations of different cases and compared with the table-based simulations. These simulations include dynamic equilibrium and transient simulations on an unstable rocket configuration (14 cm oxidizer CVRC), and transient simulation in a stable configuration (9 cm oxidizer CVRC). NN_b , which contains more layers than NN_a, has shown better performance both in off-line and online validations. In the off-line test, the difference between their errors is very small (up to 2%). NN_b wins over the NN_a model in the accuracy competition. However, its required computational cost is 2.5 times of that for NN_a for retrieving one set of outputs. In the dynamic equilibrium case, the two NN-based models have similar performance according to measures, such as overall relative error and fluctuation correlation. The NN_a-based simulation results were in agreement with the table-based simulation results. However, mRI was underestimated near the dump plane through the NN_a -based simulation. In the transient case, the main shortcoming of the NN_abased simulation is in predicting the pressure limit cycle or rms of pressure fluctuation. On average, only 75% of the fluctuation energy is captured by the NN_a simulation, whereas the NN_b simulation can capture the amplitude with great consistency, close to 100%. In the transient case, NN_b is the proper model, as it is capable of faithfully reproducing the unstable acoustic behavior. The NN_b-based model was also implemented in a case with 9 cm oxidizer post, which was
characterized as a stable configuration of CVRC. Although the mean pressure was predicted in this test, the pressure fluctuation of the NNbased simulation did not follow those from the table-based simulation exactly. In the stable case, the dynamics are significantly governed by the turbulent combustion rather than acoustic behavior. The significance of turbulence combustion causes the simulation to resemble more chaotic behavior in different quantities. Particularly, the analyses in all three simulations show that the NN-based simulation provides more correlated results with the table-based simulation, when the acoustic phenomenon dominates the system over the turbulence. Flamelet models provide a good stepping stone, as evidenced by the encouraging results shown in this work. The authors also hold the view that the framework presented in this paper can be applied on high-quality data from sources other than the flamelet table, such as high-fidelity LES or even DNS, where the cost saving of using machine learning models can be highly advantageous. Neural network models require much lower memory than the flamelet table. Although the data retrieval from an NN model is more time costly than reading the data from a lookup table, the computational cost is still lower than using the chemical kinetics solver. The data retrieval code for the NN-based CFD is not optimized. In future work, the computational cost of NN modeling will be revisited after parallelizing and optimizing the codes for a GPU implementation. # Acknowledgment This research was supported by the U.S. Air Force Office of Scientific Research under grant FA9550-18-1-0392, with Mitat Birkan as the scientific officer. #### References - [1] Crocco, L., and Cheng, S., Theory of Combustion Instability in Liquid Propellant Rocket Motors, AGARD, Monograph 8, 1956. - [2] Culick, F. E., and Yang, V., Overview of Combustion Instabilities in Liquid-Propellant Rocket Engines, AIAA, Washington, D.C., 1995, pp. 3–37. - [3] Garby, R., Selle, L., and Poinsot, T., "Analysis of the Impact of Heat Losses on an Unstable Model Rocket-Engine Combustor Using Large-Eddy Simulation," 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2012-4085, Aug. 2012. https://doi.org/10.2514/6.2012-4085 - [4] Popov, P. P., Sideris, A., and Sirignano, W. A., "Stochastic Modeling of Transverse Wave Instability in a Liquid-Propellant Rocket Engine," *Journal of Fluid Mechanics*, Vol. 745, April 2014, pp. 62–91. https://doi.org/10.1017/jfm.2014.96 - [5] Popov, P. P., Sirignano, W. A., and Sideris, A., "Propellant Injector Influence on Liquid-Propellant Rocket Engine Instability," *Journal of Propulsion and Power*, Vol. 31, No. 1, 2015, pp. 320–331. https://doi.org/10.2514/1.B35400 - [6] Yu, Y. C., O'Hara, L., Sisco, J. C., and Anderson, W. E., "Experimental Study of High-Frequency Combustion Instability in a Continuously Variable Resonance Combustor (CVRC)," 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2009-234, Jan. 2009. https://doi.org/10.2514/6.2009-234 - [7] Yu, Y. C., Sisco, J. C., Rosen, S., Madhav, A., and Anderson, W. E., "Spontaneous Longitudinal Combustion Instability in a Continuously Variable Resonance Combustor," *Journal of Propulsion and Power*, Vol. 28, No. 5, 2012, pp. 876–887. https://doi.org/10.2514/1.B34308 - [8] Garby, R., Selle, L., and Poinsot, T., "Large-Eddy Simulation of Combustion Instabilities in a Variable Length Combustor," *Comptes Rendus Mécanique*, Vol. 341, Nos. 1–2, 2013, pp. 220–229. https://doi.org/10.1016/j.crme.2012.10.020 - [9] Harvazinski, M. E., Anderson, W. E., and Merkle, C. L., "Analysis of Self-Excited Combustion Instabilities Using Two- and Three Dimensional Simulations," *Journal of Propulsion and Power*, Vol. 29, No. 2, 2013, pp. 396–409. https://doi.org/10.2514/1.B34732 - [10] Peters, N., Turbulent Combustion, Cambridge Monographs on Mechanics, Cambridge Univ. Press, Cambridge, England, U.K., 2000, pp. 170–236, Chap. 3. https://doi.org/10.1017/CBO9780511612701 - [11] Pierce, C. D., and Moin, P., "Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion," *Journal of Fluid Mechanics*, Vol. 504, April 2004, pp. 73–97. https://doi.org/10.1017/S0022112004008213 - [12] Nguyen, T. M., Popov, P. P., and Sirignano, W. A., "Longitudinal Combustion Instability in a Rocket Engine with a Single Coaxial Injector," *Journal of Propulsion and Power*, Vol. 34, No. 2, 2018, pp. 354–373. https://doi.org/10.2514/1.B36516 - [13] Nguyen, T. M., and Sirignano, W. A., "Spontaneous and Triggered Longitudinal Combustion Instability in a Single-Injector Liquid-Rocket Combustor," AIAA Journal, Vol. 57, No. 12, 2019, pp. 5351–5364. https://doi.org/10.2514/1.J057743 - [14] Nguyen, T. M., and Sirignano, W. A., "The Impacts of Three Flamelet Burning Regimes in Nonlinear Combustion Dynamics," *Combustion and Flame*, Vol. 195, Sept. 2018, pp. 170–182. https://doi.org/10.1016/j.combustflame.2018.03.031 - [15] Harvazinski, M. E., "Modeling Self-Excited Combustion Instabilities Using a Combination of Two- and Three-Dimensional Simulations," Ph.D. Dissertation, Purdue Univ., West Lafayette, IN, 2012. - [16] Sirignano, W. A., "Counterflow and Wall Stagnation Flow with Three-Dimensional Strain," *Physics of Fluids*, Vol. 31, No. 5, 2019, Paper 053605. https://doi.org/10.1063/1.5096472 - [17] Sirignano, W. A., "Counterflow Combustion with Multiple Flames Under High Strain Rates," WSSCI Fall Technical Meeting, Paper 2A01, Combustion Inst., 2019. - [18] Lopez-Camara, C. F., Jorda Juanos, A., and Sirignano, W. A., "Normal Strain Rate and Pressure Effects Using Detailed and Global Chemistry Models in a CH₄-Air Counterflow Flame," WSSCI Fall Technical Meeting, Paper 2A05, Combustion Inst., 2019. - [19] Sirignano, W. A., "Combustion with Multiple Flames Under High Strain Rates," *Combustion Science and Technology*, 2019, pp. 1–30 (in press). https://doi.org/10.1080/00102202.2019.1685507 - 20] Faller, W. E., and Schreck, S. J., "Unsteady Fluid Mechanics Applications of Neural Networks," *Journal of Aircraft*, Vol. 34, No. 1, 1997, - pp. 48–55. https://doi.org/10.2514/2.2134 - [21] San, O., and Maulik, R., "Machine Learning Closures for Model Order Reduction of Thermal Fluids," *Applied Mathematical Modelling*, Vol. 60, Aug. 2018, pp. 681–710. https://doi.org/10.1016/j.apm.2018.03.037 - [22] Singh, A. P., Medida, S., and Duraisamy, K., "Machine-Learning-Augmented Predictive Modeling of Turbulent Separated Flows over Airfoils," AIAA Journal, Vol. 55, No. 7, 2017, pp. 2215–2227. https://doi.org/10.2514/1.J055595 - [23] Ling, J., Kurzawski, A., and Templeton, J., "Reynolds Averaged Turbulence Modelling Using Deep Neural Networks with Embedded Invariance," *Journal of Fluid Mechanics*, Vol. 807, Nov. 2016, pp. 155–166. https://doi.org/10.1017/jfm.2016.615 - [24] Sen, B. A., Hawkes, E. R., and Menon, S., "Large Eddy Simulation of Extinction and Reignition with Artificial Neural Networks Based Chemical Kinetics," *Combustion and Flame*, Vol. 157, No. 3, 2010, pp. 566–578. https://doi.org/10.1016/j.combustflame.2009.11.006 - [25] Sen, B. A., and Menon, S., "Linear Eddy Mixing Based Tabulation and Artificial Neural Networks for Large Eddy Simulations of Turbulent Flames," *Combustion and Flame*, Vol. 157, No. 1, 2010, pp. 62–74. https://doi.org/10.1016/j.combustflame.2009.06.005 - [26] Ihme, M., Schmitt, C., and Pitsch, H., "Optimal Artificial Neural Networks and Tabulation Methods for Chemistry Representation in LES of a Bluff-Body Swirl-Stabilized Flame," *Proceedings of the Combustion Institute*, Vol. 32, No. 1, 2009, pp. 1527–1535. https://doi.org/10.1016/j.proci.2008.06.100 - [27] Shadram, Z., Nguyen, T. M., Sideris, A., and Sirignano, W. A., "Neural Network Closure Models for Estimating Flame Variables in a Liquid-Propellant Rocket Engine," *AIAA SciTech 2019 Forum*, AIAA Paper 2019-2008, Jan. 2019. https://doi.org/10.2514/6.2019-2008 - [28] Shadram, Z., Nguyen, T. M., Sideris, A., and Sirignano, W. A., "A Neural Network-Based Flamelet Model for a Liquid Propellant Rocket - Engine with Partially-Premixed Flame," 11th U.S. National Combustion Meeting, Paper 2B05: 71TF-0466, WSSCI, 2019. - [29] Harvazinski, M. E., Huang, C., Sankaran, V., Feldman, T. W., Anderson, W. E., Merkle, C. L., and Talley, D. G., "Combustion Instability Mechanisms in Pressure-Coupled Gas-Gas Coaxial Rocket Injector," 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conferences, AIAA Paper 2013-3990, July 2013. https://doi.org/10.2514/6.2013-3990 - [30] Poinsot, T., and Veynante, D., Theoretical and Numerical Combustion, 2nd ed., R. T. Edwards, 2005, pp. 434–447. - [31] Crocco, L., and Sirignano, W. A., "Effects of Transverse Velocity Components on the Nonlinear Behavior of Short Nozzles," AIAA Journal, Vol. 4, No. 8, 1996, pp. 1428–1430. https://doi.org/10.2514/3.3691 - [32] Srinivasan, S., Ranjan, R., and Menon, S., "Flame Dynamics During Combustion Instability in a High-Pressure, Shear-Coaxial Injector Combustor," Flow, Turbulence and Combustion, Vol. 94, No. 1, 2015, pp. 237– 262. https://doi.org/10.1007/s10494-014-9569-x - [33] Murphy, K. P., Machine Learning: A Probabilistic Perspective, MIT Press, Cambridge, MA, 2013. - [34] Goodfellow, I., Bengio, Y., and Courville, A., *Deep Learning*, MIT Press, Cambridge, MA, 2016. - [35] Glorot, X., and Bengio, Y., "Understanding the Difficulty of Training Deep Feedforward Neural Networks," *Proceedings of the 13th International Conference on Artificial Intelligence and Statistics*, Vol. 9, 2010, pp. 249–256, http://proceedings.mlr.press/v9/glorot10a.html. - [36] Loader, C., Local Regression and Likelihood, Springer-Verlag, New York, 1999. - [37] Nickolls, J., and Dally, W. J., "The GPU Computing Era," *IEEE Micro*, Vol. 30, No. 2, 2010, pp. 56–69. https://doi.org/10.1109/MM.2010.41 Y. Ju Associate Editor